锐英源软件
第一信赖

精通

英语

开源

擅长

开发

培训

胸怀四海 

第一信赖

当前位置:锐英源 / 开源技术 / 语音识别开源 / pnorm DNN中的说话人自适应训练Speaker Adapted Training
服务方向
kaldi开发技术服务
软件开发
办公财务MIS
股票
设备监控
网页信息采集及控制
多媒体
软件开发培训
流媒体开发
Java 安卓移动开发
Java Web开发
HTML5培训
iOS培训
网站前端开发
VC++
C++游戏开发培训
C#软件
C语言(Linux)
ASP.NET网站开发(C#)
C#软件+ASP.NET网站
SOCKET网络通信开发
COMOLE和ActiveX开发
C++(Linux)
汇编和破解
驱动开发
SkinMagicVC++换肤
MicroStation二次开发
计算机英语翻译
联系方式
固话:0371-63888850
手机:138-0381-0136
Q Q:396806883
微信:ryysoft

pnorm DNN中的说话人自适应训练Speaker Adapted Training


Can we do Speaker Adapted Training using p-norm DNN model which is trained by local/online/run_nnet2_ms.sh?

我们可以使用由local / online / run_nnet2_ms.sh训练的p-norm DNN模型进行说话人自适应训练吗?

The DNN is already trained in a speaker-adaptive fashion -- the speaker identity is captured in those ivectors you have to train before train the DNN.DNN已经以说话人自适应的方式进行训练-说话人身份已在训练DNN之前要训练的ivector中捕获。

Generally speaking, not this script, Can we do Speaker Adapted Training using DNN model?一般来说,不用此脚本,我们可以使用DNN模型进行说话人适应性培训吗?

You can definitely do speaker-adaptive training on DNN -- for example, as it is demonstrated in that script. :)
Perhaps you should explain in more detail what you are after.您绝对可以在DNN上进行说话人自适应培训-例如,如该脚本所示。:)
也许您应该更详细地说明您所想要的。


Let me explain, we already have a DNN model which is trained by local/online/run_nnet2_ms.sh, and Now, when decoding, we want to improve the recognition rate for specific people by Speaker Adapted, Any solutions in kaldi?让我解释一下,我们已经有一个由local / online / run_nnet2_ms.sh训练的DNN模型,现在,在解码时,我们希望通过Speaker Adapted提高特定人的识别率,kaldi有解决方案吗?


It already does adaptation so there is nothing more you can do, other than than keeping the adaptation history (there is a class in the code,
something like SpeakerAdaptationState). You could experiment with downweighting silence (see the script), and with the
--max-remembered-frames and --max-count options to see if tuning them helps. Some of these options are in the iVector extraction config.它已经进行了适配,因此 除了保留适配历史(代码中有一个类, 如SpeakerAdaptationState之类)之外,您无能为力。您可以尝试降低静音(请参见脚本),并使用 --max-remembered-frames和--max-count选项来查看调整它们是否有帮助。其中一些选项位于iVector提取配置中。


I guess you could try discriminative training on the top of the network. I think there is an example in wsj or swb egs.我想您可以尝试在网络顶部进行有区别的培训。我认为在wsj或swb egs中有一个示例。

友情链接
版权所有 Copyright(c)2004-2021 锐英源软件
公司注册号:410105000449586 豫ICP备08007559号 最佳分辨率 1024*768
地址:郑州大学北校区院(文化路97号院)内