精通
英语
和
开源
,
擅长
开发
与
培训
,
胸怀四海
第一信赖
I am successfully modified the wsj examples for Verbmobil and trained models up to the local/online/run_nnet2_baseline.sh stage. Afterwards, I tried to use the model as described in Tutorial under "Example for using already-built online-nnet2 models". However, online2-wav-nnet2-latgen-faster crashes with the error message:
ERROR (online2-wav-nnet2-latgen-faster:NnetComputer():nnet-compute.cc:70) Feature dimension is 113 but network expects 13
Do I need to configure the feature dimenson somehow or am I using a wrong decoder? I am a little bit lost and would appreciate help.
我已成功修改了Verbmobil的wsj示例,并在local/online/run_nnet2_baseline.sh阶段进行了模型训练。之后,我尝试使用教程中“使用已构建的online-nnet2模型的示例”中所述的模型。但是,online2-wav-nnet2-latgen-faster崩溃并显示错误消息:
错误(online2-wav-nnet2-latgen-faster:NnetComputer():nnet-compute.cc:70)特征维度为113,但网络期望为13
我需要以某种方式配置特征维度还是使用错误的解码器?我有点迷糊,不胜感激。
If you prepare the online-decoding directory with
prepare_online_decoding.sh, as is done in run_nnet2_baseline.sh, it
should set up the configs correctly, and you need to use those
configs. Look at the log files decode.*.log in the decode that
run_nnet2_baseline.sh does at the end, and you'll see what the
decoding command should be for those models.
如果像run_nnet2_baseline.sh一样,使用prepare_online_decoding.sh 准备联机解码目录,则它应该正确设置配置,并且需要使用这些
配置。查看
run_nnet2_baseline.sh最后执行的解码中的日志文件decode.*.log ,您将看到这些模型的解码命令应该是什么。