锐英源软件
第一信赖

精通

英语

开源

擅长

开发

培训

胸怀四海 

第一信赖

当前位置:锐英源 / 开源技术 / C++开源心得 / 面向对象本质和面向对象的各个层次说明
服务方向
人工智能数据处理
人工智能培训
kaldi数据准备
小语种语音识别
语音识别标注
语音识别系统
语音识别转文字
kaldi开发技术服务
软件开发
运动控制卡上位机
机械加工软件
软件开发培训
Java 安卓移动开发
VC++
C#软件
汇编和破解
驱动开发
联系方式
固话:0371-63888850
手机:138-0381-0136
Q Q:396806883
微信:ryysoft

面向对象本质和面向对象的各个层次说明

 

本文档由锐英源孙老师编写,任何人未经孙老师允许不得在网上任何网站公布此资料。锐英源保留且必然追究任何违反此规则的事件相关人的责任。

 

引子

OOP涉及的概念有:数据抽象、隐藏实现、函数重载与缺省参数、运算符重载、继承和组合、多态和虚函数、模板和包容器类、多重继承、异常处理和运行时类型识别等等,但是其核心是封装、继承和多态,同时对象也是重要概念。对具体的概念,这里是比喻描述为主,概念性的东西不多讲,以引导和入门为主。在对概念进行了理解后会描述一些经典例子,用实例让大家加深OOP如何应用,让大家明白它的威力在哪!在讲应用例子前,请大家先沉浸在OOP的本源里片刻吧!

对象:特性+行为

第一个面向对象的程序设计语言是6 0年代开发的S i m u l a - 6 7。其目的是为了解决模拟问题。

典型的模拟问题是银行出纳业务,包括出纳部门、顾客、业务、货币的单位等大量的“对象”。

把那些在程序执行期间除了状态之外其他方面都一样的对象归在一起,构成对象的“类”,这就是“类”一词的来源。

类描述了一组有相同特性(数据元素)和相同行为(函数)的对象。类实际上就是数据类

型,例如,浮点数也有一组特性和行为。区别在于程序员定义类是为了与具体问题相适应,而不是被迫使用已存在的数据类型。这些已存在的数据类型的设计动机仅仅是为了描述机器的存储单元。程序员可以通过增添他所需要的新数据类型来扩展这个程序设计语言。该程序设计系统欢迎创建、关注新的类,对它们进行与内部类型一样的类型检查。

这种方法并不限于去模拟具体问题。尽管不是所有的人都同意,但大部分人相信,任何程

序都模拟所设计系统。O O P技术能很容易地将大量问题归纳成为一个简单的解,这一发现产生了大量的O O P语言,其中最著名的是S m a l l t a l k—C++ 之前最成功的O O P语言。

抽象数据类型的创建是面向对象程序设计中的一个基本概念。抽象数据类型几乎能像内部类

型一样准确工作。程序员可以创建类型的变量(在面向对象程序设计中称为“对象”或“实例”)并操纵这些变量(称为发送“消息”或“请求”,对象根据发来的消息知道需要做什么事情)。

面向对象的开发强调从问题域的概念到软件程序和界面的直接映射;心理学的研究也表明,把客观世界看成是许多对象更接近人类的自然思维方式。对象比函数更为稳定;软件需求的变动往往是功能相关的变动,而其功能的执行者----对象----通常不会有大的变动。另外,面向对象的开发也支持、鼓励软件工程实践中的信息隐藏、数据抽象和封装。在一个对象内部的修改被局部隔离。面向对象开发的软件易于修改、扩充和维护。

面向对象也被扩充应用于软件生命周期的各个阶段---从分析到编码。而且,面向对象的方法自然而然地支持快速原型法和RAD(Rapid Application Development)。面向对象开发的使用鼓励重用,不仅软件的重用,还包括分析、设计的模型的重用。更进一步,OO技术还方便了软件的互换性,即,网络中一个节点上应用能够利用另一个节点上的资源。面向对象的开发还支持并发、层次和复杂等一些在目前的软件系统中常见的现象。今天我们常常会需要建造一些软件系统----不止是一黑盒应用。这些复杂系统通常包含由多个子系统组成的层次结构。面向对象的开发支持开放系统的建设;利用不同的应用来进行软件集成有了更大的柔性。最后,面向对象开发的使用可以减小开发复杂系统所面临的危险,主要是因为系统集成遍布软件生命周期的各个阶段。

继承:类型关系

类型不仅仅说明一组对象上的约束,还说明与其他类型之间的关系。两个类型可以有共同的特性和行为,但是,一个类型可能包括比另一个类型更多的特性,也可以处理更多的消息(或对消息进行不同的处理)。继承表示了基本类型和派生类型之间的相似性。一个基本类型具有所有由它派生出来的类型所共有的特性和行为。程序员创建一个基本类型以描述系统中一些对象的思想核心。由这个基本类型派生出其他类型,表达了认识该核心的不同途径。

例如,垃圾再生机要对垃圾进行分类。这里基本类型是“垃圾”, 每件垃圾有重量、价值等等,并且可以被破碎、融化或分解。这样,可以派生出更特殊的垃圾类型,它们可以有另外的特性(瓶子有颜色)或行为(铝可以被压碎,钢可以被磁化)。另外,有些行为可以不同(纸的价值取决于它的种类和状态)。程序员可以用继承建立类的层次结构,在该层次结构中用类型术语来表述他需要解决的问题。

第二个例子是经典的形体问题,可以用于计算机辅助设计系统或游戏模拟中。这里基本类型是“形体”,每个形体有大小、颜色、位置等。每个形体能被绘制、擦除、移动、着色等。由此,可以派生出特殊类型的形体:圆、正方形、三角形等,它们中的每一个都有另外的特性和行为,例如,某些形体可以翻转。有些行为可以不同(计算形体的面积)。类型层次结构既体现了形体间的类似,又体现了它们之间的区别。在随后的Draw2例子内会给出形体问题的一个完善说明,请注意学习。

用与问题相同的术语描述问题的解是非常有益的,这样,从问题描述到解的描述之间就不需要很多中间模型(程序语言解决大型问题,就需要中间模型)。面向对象之前的语言,描述 问题的解不可避免地要用计算机术语。使用对象术语,类型层次结构是主要模型,所以可以从现实世界中的系统描述直接进入代码中的系统描述。实际上,使用面向对象设计,人们的困难之一是从开始到结束过于简单。一个已经习惯于寻找复杂解的、训练有素的头脑,往往会被问题的简单性难住。

多态性

当处理类型层次结构时,程序员常常希望不把对象看作是某一特殊类型的成员,而把它看作基本类型成员,这样就可以编写不依赖于特殊类型的代码。在形体例子中,函数可以对一般形体进行操作,而不关心它们是圆、正方形还是三角形。所有的形体都能被绘制、擦除和移动,所以这些函数能简单地发送消息给一个形体对象,而不考虑这个对象如何处理这个消息。

这样,新添类型不影响原来的代码,这是扩展面向对象程序以处理新情况的最普通的方法。

例如,可以派生出形体的一个新的子类,称为五边形,而不必修改那些处理一般形体的函数。

通过定义反映事物本质的完善基类,通过在基类派生方向清晰的新子类,很容易实施出一个架构,这个能力很重要,因为它极大地减少了软件维护的花费。在随后的例子中我会举一个和DLL文件相关的跨VC工程的多态例子,你就会发现OOP和多态实现了一个怎样惊人的世界!!!

(所谓“软件危机”正是由软件的实际花费远远超出人们的想象而产生的。)

如果试图把派生类型的对象看作它们的基本类型(圆看作形体,自行车看作车辆,鸬鹚看作鸟),就有一个问题:如果一个函数告诉一个一般形体去绘制它自己,或者告诉一个一般的车辆去行驶,或者告诉一只一般的鸟去飞,则编译器在编译时就不能确切地知道应当执行哪段代码。同样的问题是,消息发送时,程序员并不想知道将执行哪段代码。绘图函数能等同地应用于圆、正方形或三角形,对象根据它的特殊类型来执行合适的代码。如果增加一个新的子类,不用修改函数调用,就可以执行不同的代码。编译器不能确切地知道执行哪段代码,那么它应该怎么办呢?

在面向对象的程序设计中,答案是巧妙的。编译器并不做传统意义上的函数调用。由非OOP编译器产生的函数调用会引起与被调用代码的“早捆绑”,对于这一术语,读者可能还没有听说过,因为从来没有想到过它。早捆绑意味着编译器对特定的函数名产生调用,而连接器确定调用执行代码的绝对地址。对于OOP,在程序运行之前,编译器不确定执行代码的地址,所以,当消息发送给一般对象时,需要采用其他的方案。

为了解决这一问题,面向对象语言采用“晚捆绑”的思想。当给对象发送消息时,在程序运行之前不去确定被调用的代码。编译器保证这个被调用的函数存在,并完成参数和返回值的类型检查,但是它不知道将执行的准确代码。

为了实现晚捆绑,编译器在真正调用的地方插入一段特殊的二进制代码。通过使用存放在对象自身中的信息,这段代码在运行时计算被调用函数的地址(这一问题将在第1 4章中详细介绍)。这样,每个对象就能根据一个指针的内容有不同的行为。当一个对象接收到消息时,它根据这个消息判断应当做什么。

程序员可以用关键字virtual表明他希望某个函数有晚捆绑的灵活性,而并不需要懂得virtual的使用机制。没有它,就不能用C++做面向对象的程序设计。Virtual函数(虚函数)表示允许在相同家族中的类有不同的行为。这些不同是引起多态行为的原因。

操作概念:OOP程序像什么

我们已经知道,用C 语言编写的过程程序就是一些数据定义和函数调用。要理解这种程序的含义,程序员必须掌握函数调用和函数实现的本身。这就是过程程序需要中间表示的原因。

中间表示容易引起混淆,因为中间表示的表述是原始的,更偏向于计算机,而不偏向于所解决的问题。

因为C++向C语言增加了许多新概念,所以程序员很自然地认为, C++程序中的main( )会比功能相同的C 程序更复杂。但令人吃惊的是,一个写得很好的C++程序一般要比功能相同的C程序更简单和容易理解。程序员只会看到一些描述问题空间对象的定义(而不是计算机的描述),发送给这些对象的消息。这些消息表示了在这个空间的活动。面向对象程序设计的优点之一是通过阅读,很容易理解代码。通常,面向对象程序需要较少的代码,因为问题中的许多部分都可以用已存在的库代码。

面向对象的建模

  面向对象的建模不仅仅是新的编程语言的汇总。它是一种新的思维方式,一种关于计算和信息结构化的新思维。面向对象的建模,把系统看做是相互协作的对象,这些对象是结构和行为的封装,都属于某个类,那些类具有某种层次化的结构。系统的所有功能通过对象之间相互发送消息来获得。面向对象的建模可以视为是一个包含以下元素的概念框架:抽象、封装、模块化、层次、分类、并行、稳定、可重用和可扩展性。

面向对象的建模的出现并不能算是一场计算革命。更恰当地讲,它是面向过程和严格数据驱动的软件开发方法的渐进演变结果。软件开发的新方法受到来自两个方面的推动:编程语言的发展和日趋复杂的问题域的需求驱动。尽管在实际中分析和设计在编程阶段之前进行,但从发展历史看却是编程语言的革新带来设计和分析技术的改变。同样,语言的演变也是对计算机体系的增强和需求的日益复杂的自然响应。

影响OO产生的诸多因素中,最重要的可能要算是编程方法的进步了。在过去的几十年中,编程语言中对抽象机制的支持已经发展到了一个较高的水平。这种抽象的进化从地址(机器语言)到名字(汇编语言),到表达式(第一代高级语言,如Fortran),到控制(第二代高级语言,如Cobol),到过程和函数(第二代和早期第三代高级语言,如Pascal),到模块和数据(晚期第三代高级语言,如modula),最后到对象(基于对象和面向对象的语言)。Smalltalk和其他面向对象语言的发展使得新的分析和设计的技术的实现成为可能。

这些新的OO的技术实际上是结构化和数据库方法的融合。OO的方法中,小范围内对面向数据流的关注,如偶合和聚合,也是很重要的。同样,对象内部的行为最终也需要面向过程的设计方法。数据库技术中的实体-关系(ER图)的数据建模思想也在 OO的方法中得以体现。

计算机硬件体系结构的进步,性能价格比的提高和硬件设计中对象概念的引入都对OO的发展产生了一定的影响。OO的程序通常要更加频繁地访问内存,需要更高的处理速度。他们需要并且也正在利用强大的计算机硬件功能。哲学和认知科学的层次和分类理论也促进了OO的产生和发展。最后,计算机系统不断增长的规模、复杂度和分布性都对OO技术起了或多或少的推动作用。

因为影响OO发展的因素很多,OO技术本身还未成熟,所以在思想和术语上有很多不同的提法。所有的OO语言并非生而平等,他们在术语、概念的运用上也各不相同。尽管也存在统一的趋势,但就如何进行面向对象的分析、设计而言还没有完全达成共识,更没有统一的符号来描述这些活动。(说明:UML正在朝这方向努力) 但是,OO的开发已经在以下领域被证明是成功的:空中交通管理、动画设计、银行、商业数据处理、命令和控制系统、CAD、CIM、数据库、专家系统、图象识别、数学分析、音乐合成、操作系统、过程控制、空间站软件、机器人、远程通讯、界面设计和VLSI设计。毫无疑问,OO技术的应用已经成为软件工业发展的主流。

面向对象编程

<1> 概念

在面向对象编程中,程序被看作是相互协作的对象集合,每个对象都是某个类的实例,所有的类构成一个通过继承关系相联系的层次结构。面向对象的语言常常具有以下特征:对象生成功能、消息传递机制、类和遗传机制。这些概念当然可以并且也已经在其他编程语言中单独出现,但只有在面向对象语言中,他们才共同出现,以一种独特的合作方式互相协作、互相补充。

过程化编程模式: 参数输入----- | 代 码 | ------结果输出

为实现某个功能,参数被传入某个处理过程,最后传回计算结果。

| 对象------ 数据结构 面向对象编程模式:

界面 | 对象------ 和

| 对象------ 操作

OOP中,功能是通过与对象的通讯获得的。对象可以被定义为一个封装了状态和行为的实体;或者说是数据结构(或属性)和操作。状态实际上是为执行行为而必须存于对象之中的数据、信息。对象的界面,也可称之为协议,是一组对象能够响应的消息的集合。 消息是对象通讯的方式,因而也是获得功能的方式。对象受到发给他的消息后,或者执行一个内部操作(有时成为方法或过程),或者再去调用其他对象的操作。所有对象都是类的实例。类是具有相同特点的对象的集合,或者也可以说,类是可用于产生对象的一个模版。对象响应一个消息而调用的方法,由接受该消息的对象自己决定。 类可以以一种层次结构来安排。在这个层次结构中,子类可以从比他高的超类中继承得到状态和方法。当对象接收到一个消息后,寻找相应的方法的过程将在从该对象的类开始,并在该类所处的层次结构中展开,最后,直到找着该方法,或者什么也没找到(将会报错)。在某些语言中,一个给定的类可以从不止一个超类中继承,称之为多继承。如果采用动态联编,继承就导致了多态性。多态性描述的是如下现象:如果几个子类都重新定义了超类的某个函数(都用相同的函数名),当消息被发送到一个子类对象时,在执行时该消息会由于子类确定的不同而被解释为不同的操作。 方法也可以被包括在超类的界面中被子类继承,而实际上并不去真正定义他。这样的超类也叫抽象类。抽象类不能被实例化,因此也就只能被用于产生子类。

<2> 语言

面向对象的语言包含4个基本的分支:

1 基于Smalltalk的; 包括smalltalk的5个版本,以Smalltalk-80为代表。

2 基于C的; 包括 objective-C, C++, Java

3 基于LISP的; 包括 Flavors, XLISP, LOOPS, CLOS

4 基于PASCAL的。包括 Object Pascal, Turbo Pascal, Eiffel, Ada 95

Simula实际上是所有这些语言的老祖宗。在这些OO语言中,术语的命名和支持OO的能力都有不同程度的差别。 尽管Smalltalk-80不支持多继承,它仍被认为是最面向对象的语言(the truest OO language)。

在基于C的OO语言中,Object-C 是Brad Cox开发的,它带有一个丰富的类库,已经被成功用于大型系统的开发。C++是由贝尔实验室的Bjarne Stroustrup写的。它将C语言中的STRUCT 扩展为 具有数据隐藏功能的CLASS。多态性通过虚函数(virtual functions)来实现。C++ 2.0 支持多继承。在多数软件领域,尤其是Unix平台上,C++都是首选的面向对象编程语言。 同C和C++相类似的新一代基于Internet的面向对象语言Java是由Sun microsystems研制的。它于1995年伴随着Internet的崛起而风靡一时。用Java写的applets可以嵌入HTML中被解释执行,这使它具备了跨平台特性。Java和Ada一样支持多线程和并发机制,又象C一样简单、便携。

基于LISP的语言,多被用于知识表达和推理的应用中。其中CLOS(Common LISP Object System)是面向对象LISP的标准版。

在基于Pascal的语言中,Object Pascal是由Apple和Niklaus Wirth为Macintosh开发的,它的类库是MacApp。Turbo Pascal 是Borland公司以Object Pascal为范本开发的。

Eiffel由交互软件工程公司的Bertrand Meyer于1987年发布的。它的语法类似Ada,运行于Unix环境。Ada在1983年刚出来时并不支持继承和多态性,因而不是面向对象的。到了1995年,一个面向对象的Ada终于问世,这就是Ada 95。

除了上述的面向对象的语言之外,还有一些语言被认为是基于对象(Object-based)的。它们是:Alphard, CLU, Euclid, Gypsy, Mesa, Modula。

面向对象的软件工程

生命周期

尽管面向对象的语言正在取得令人激动的进展,但我们都知道,编码并非是软件开发中的问题的主要来源。相比之下,需求和分析的问题更加普遍,而且它们的纠错代价更加昂贵。因此, 对OO开发技术的关注就不能仅仅集中在编码上面,更应集中关心软件工程的其他方面。OO方法在处理复杂系统的分析和设计、分析和设计的重用方面的应用前景也是非常可观。如果我们承认OO的软件开发不仅仅局限于编码活动,那么就必须采用一种全新的开发模式,包括新的软件生命周期。 目前最常见的生命周期是“瀑布”模型(结构化)。它是在60年代末“软件危机”后出现的第一个生命周期模型。如下所示。

分析 ----- 设计 ----- 编码 ----- 测试 ------ 维护

如图所示,瀑布式生命周期的开发过程是顺序行进的;活动流向基本是单向的。它假设开发者在开发初期对系统的了解足够清楚。不幸的是,任何软件开发活动都不可避免地要涉及大量迭代过程,无论你事先是否安排。好的设计人员指的是那些能同时在抽象的层面和具体的细节上进行工作的实践家。总的来说,瀑布式生命周期的缺点表现在三个方面:<1> 后期的变化、迭代、改动困难 <2> 不支持重用 <3> 没有一个联系各个阶段的统一模型。

面向对象的方法从问题模型开始,然后就是识别对象、不断细化的过程。它从本质上就是迭代的和渐增的。在这里,快速原型和反馈环路是必需的标准结构。开发过程就是一次次的迭代反复过程。随着迭代的进行,系统的功能不断完善。这里,传统的开发模式中在分析、设计和编码等各个阶段之间的明显界限变得模糊起来。其原因是因为对象的概念弥漫了整个开发过程。对象和它们之间的关系成为分析、设计和编码等各个阶段的共同表达媒介。开发的重心从编码向分析偏移,从功能为中心向数据为中心偏移。而且,面向对象开发的迭代和无缝性使得重用变得更加自然。

近来,为改善面向对象开发的可管理性,玻姆(Boehm,1988)提出了一个结合了宏观和微观视角(macro & microview)的螺旋开发模型。宏观包括3个阶段:1分析---发现和识别对象;2 设计---发明和设计对象;3 实施---创建和实现对象。每个宏观阶段都包含一些微观迭代活动。

OOA和OOD

  由于面向对象的技术还比较新,目前存在许多种面向对象的分析和设计方法。面向对象的分析(OOA)建立于以前的信息建模技术的基础之上,可以定义为是一种以从问题域词汇中发现的类和对象的概念来考察需求的分析方法。OOA的结果是一系列从问题域导出的“黑箱”对象。OOA通常使用“剧情(scenarios)”来帮助确定基本的对象行为。一个剧情是发生在问题域的一个连续的活动序列。在对一个给定的问题域进行 OOA时,“框架”(Frameworks)的概念非常有用。框架是应用或应用子系统的骨架,包含一些具体或者抽象的类。或者说,框架是一个特定的层次结构,包含描述某一问题域的抽象父类。当下流行的所有的OOA方法的一个缺点就是他们都缺乏一种固定的模式(formality)。

在面向对象的设计(OOD)阶段,注意的焦点从问题空间转移到了解空间。OOD是一种包含对所设计系统的逻辑的和物理的过程描述,以及系统的静态和动态模型的设计方法(Booch,1994)。

在OOA和OOD中,都存在着对重用性的关注。目前,OO技术的研究人员们正在尝试定义“设计模式(design patterns)”这一概念。它是一种可重用的“财富”,可以应用于不同的问题域。通常,设计模式指的是一种多次出现的设计结构或解决方案。如果对他们进行系统的归类,即可被重用,可以构成不同设计之间通信的基础。

OOD技术实际上早于OOA技术而出现。目前在OOA和OOD已经很难画出一条清晰的界限。因此,下面的描述给出一些常用的OOA/OOD技术的(联合)概貌。

Meyer 用语言作为表达设计的工具。(1988)

Booch的OOD技术扩展了他以前在Ada方面的工作。他采用一种“反复综合(round-trip gestalt)”的方法,包括以下过程:识别对象,识别对象的语义,识别对象之间的关系,进行实施,同时包含一系列迭代。Booch是最先使用类图,类分类图,类模板和对象图来描述OOD的人(1991)。

Wrifs-Brock's的OOD技术是由职责代理来驱动的。类职责卡(Class Responsibilities Cards)被用来记录负责特定功能的类。在确定了类及其职责之后,再进行更详细的关系分析和子系统的实施。(1990)

Rumbaugh使用3种模型来描述一个系统:1 对象模型,描述系统中对象的静态结构;2 动态模型,描述系统状态随时间变化的情况;3 功能模型,描述系统中各个数据值的转变。对象图,状态转换图和数据流图分别被用于描述这3个模型。(1991)

Coad和Yourdon采用以下的OOA步骤来确定一个多层OO模型(5个层次):找出类和对象,识别结构和关系,确定主题,定义属性,定义服务。5个步骤分别对应模型的5个层次,即类和对象层,主题层,结构层,属性层和服务层。他们的OOD方法既是多层次的又是多方面的(multicomponent)。层次机构和OOA一样。多方面包括:问题域,人与人的交互,任务管理和数据管理。

Ivar Jacobson 提出了Objectory方法(或Jacbson法),一种他在瑞典Objective系统中开发的面向对象软件工程方法。Jacbson的方法特别强调了“Use Case”的使用。 Use Case成为分析模型的基础,用交互图(Interaction Diagram)进一步描述后就形成设计的模型。Use cases同时也驱动测试阶段的测试工作。到目前为止,Jacbson法是最为完整的工业方法。 (1992)

以上所述的方法还有许多的变种,无法一一列出。近年来,随着各种方法的演变,它们之间也互相融合。1995年,Booch,Rumbaugh和Jacbson联手合作,提出了第一版的UML(Unified Modelling Language),一体化建模语言。(目前已经成为OO建模语言的事实标准)

管理问题

  当组织向面向对象的开发技术转向时,支持软件开发的管理活动也必然要有所改变。承诺使用OO技术即意味要改变开发过程,资源和组织结构。(Goldberg 1995) OO开发的迭代、原型以及无缝性消除了传统开发模式不同阶段之间的界限。新的界限必须被重新确定。同时,一些软件测度的方法也不在适用了。“代码行数”LOC(Lines of Code)绝对过时了。重用类的数目,继承层次的深度,类与类之间关系的数目,对象之间的耦合度,类的个数以及大小显得更有意义。在OO的软件测度方面的工作还是相当新的,但也已经有了一些参考文献。(Lorenz 1993)

资源分配和人员配置都需要重新考虑。开发小组的规模逐步变小,擅长重用的专家开始吃香。重点应该放在重用而非LOC上。重用的真正实现需要一套全新的准则。在执行软件合同的同时,库和应用框架也必须建立起来。长期的投资策略,以及对维护这些可重用财富的承诺和过程,变的更加重要。

至于软件质量保证,传统的测试活动仍是必须的,但它们的计时和定义必须有所改变。例如,将某个功能“走一遍”将牵涉到激活一个剧情(scenario),一系列对象互相作用,发送消息,实现某个特定功能。测试一个OO系统是另一个需要进一步研究的课题。发布一个稳定的原型需要不同与以往控制结构化开发的产品的配置管理。

另一个管理方面要注意的问题是合适的工具支持。一个面向对象的开发环境是必须的。同时需要的还包括:一个类库浏览器,一个渐增型编译器,支持类和对象语义的调试器,对设计和分析活动的图形化支持和引用检查,配置管理和版本控制工具,以及一个象类库一样的数据库应用。

除非面向对象开发的历史足以提供有关资源和消耗的数据,否则成本估算也是一个问题。计算公式中应该加入目前和未来的重用成本。最后,管理也必须明白在向面向对象方法转变的过程中要遇到的风险。如消息传递、消息传递的爆炸增长、动态内存分配和释放的代价。还有一些起步风险,如对合适的工具,开发战略的熟悉,以及适当的培训,类库的开发等。

友情链接
版权所有 Copyright(c)2004-2021 锐英源软件
公司注册号:410105000449586 豫ICP备08007559号 最佳分辨率 1024*768
地址:郑州大学北校区院(文化路97号院)内